Результаты исследований и работ ученых и конструкторов

УДК 550.832.55:622.24

В. В. Винокуров, Р. А. Шайхутдинов, А. В. Бельков ООО НПФ «ВНИИГИС-3ТК»

ОПЫТ РАЗРАБОТКИ МОДУЛЯ ГАММА-ГАММА-ПЛОТНОСТНОГО КАРОТАЖА ДЛЯ ИССЛЕДОВАНИЯ ГОРИЗОНТАЛЬНЫХ НЕФТЕГАЗОВЫХ СКВАЖИН В ПРОЦЕССЕ БУРЕНИЯ

Выполнена разработка и произведены опытно-промышленные испытания автономного модуля ГГК-П, разработанного в ООО НПФ «ВНИИГИС-3ТК» в составе компоновки низа бурового инструмента при бурении горизонтального ствола нефтегазовой скважины (LWD). Минимальное расстояние расположения модуля ГГК-П от долота составляет 11 *м*, модуль сделан таким образом, что во внутренней полости помимо бурового раствора могут проходить другие приборы ГИС. Результаты сопоставлений измерений, выполненных на образцах плотности по керну, а также с помощью зарубежной аппаратуры, подтвердили высокую сходимость, что является одним из критериев их достоверности. Включение в комплекс метода ГГК-П в имеющийся комплекс методов УЭС, ГК, НГК, 2ННК-Т, реализуемый в составе единого конструктива ЗТК-42КК LWD, позволило значительно расширить круг решаемых задач, удовлетворяющих требованиям заказчика на этапе эксплуатационного бурения.

Ключевые слова: нефтегазовые скважины, горизонтальный ствол, гамма-гаммаплотностной каротаж во время бурения. Одной из эффективных технологий разработки нефтегазовых месторождений является использование горизонтальных скважин, в том числе и многоствольных.

Фирма ООО НПФ «ВНИИГИС-ЗТК» почти 20 лет занимается разработкой навигационного оборудования для проводки горизонтальных и наклонно-направленных скважин и аппаратуры для геофизических исследований в процессе бурения (LWD), в том числе автономной. Фирма имеет большой опыт НИР, ОКР, производственных работ технологией LWD и широкий круг отечественных и зарубежных заказчиков. Отличительной особенностью разрабатываемой технологии LWD является использование для передачи информации электромагнитного канала связи. В качестве источника питания применяются химические источники.

Одной из последних разработок фирмы является модуль ГГК-П технологии LWD. На рис. 1, *а* представлена схема расположения модуля ГГК-П в конструктиве имитатора центратора бурового инструмента. Отличительной особенностью конструкции является установка модуля ГГК-П в одном из «ребер» центрирующего устройства бурового инструмента, что позволяет обеспечить минимальный зазор между модулем и стенкой скважины и расположить модуль параллельно стенке скважины, что значительно повышает достоверность получаемой информации о плотности горных пород. Для каждого диаметра скважины используется свой центратор, при этом размеры полости в «ребре» центратора для крепления модуля ГГК-П остаются неизменными. На рис. 1, *б* приведены размеры зондов модуля ГГК-П, выбранные по результатам экспериментальных работ на образцах плотности.

Экспериментальные работы и определение зондовой установки модуля ГГК-П с оптимальными техническими и метрологическими характеристиками производились на образцах плотности 2π -геометрии (полупласты) метрологического центра АО НПП «ВНИИГИС» и 4 π -геометрии (скважина) метрологического центра ООО НПФ «АМК ГОРИЗОНТ» (г. Октябрьский). Характеристики образцов плотности и эффективного атомного номера 2π -геометрии АО НПП «ВНИИГИС» приведены в табл. 1. Характеристика стандартных образцов водонасыщенной пористости и плотности кальцитовых пород с диаметром скважины 216 *мм* ООО НПФ «АМК ГОРИЗОНТ» приведены в табл. 2.

Рис. 1. Схема расположения модуля ГГК-П в конструктиве имитатора центратора бурового инструмента (*a*) и размеры зондов модуля ГГК-П, выбранные по результатам экспериментальных работ на образцах плотности (*б*)

Таблица 1

Характеристики образцов плотности и эффективного атомного номера 2*π*-геометрии АО НПП «ВНИИГИС»

N⁰	Марки сплавов, металлы, природный материал	σ, <i>г/см</i> ³	Z _{эф.ср.} , ед.
1	Магний МА-2 ГОСТ 14957-76	1,86 (1,89*)	15,08
2	Алюминий АДО ГОСТ 4784-74	2,58 (2,71*)	13,10
3	Алюминий В-95 ГОСТ 4784-74	2,74 (2,85*)	16,16
4	Коелгинский мрамор ГОСТ 9479-84	2,69 (2,71*)	15,11
5	Гетерогенный AI + Mg Магний ГОСТ 14957-76 Алюминий ГОСТ 4784-74	2,12 (2,29*)	12,97 12,84 13,10
6	Гетерогенный Ti + Mg Алюминий АЛ-1 ГОСТ 4784-74 Титан BT1-0	2,94 (2,93*)	16,10

* В скобках даны значения объемной плотности.

Таблица 2

Характеристика стандартных образцов водонасыщенной пористости и плотности кальцитовых пород с диаметром скважины 216 *мм* ООО НПФ «АМК ГОРИЗОНТ»

№ модели	Пористость,%	Плотность, <i>г/см</i> ³	Диаметр, <i>мм</i>	<i>Н</i> скважины, <i>мм</i>
1	0,7	2,698	216	1500
2	16,5	2,43	216	1500
3	34,0	2,13	216	1500

На рис. 2 приведены результаты обработки выполненных измерений на моделях скважин 4 π -геометрии (*a*) и на моделях плотности 2 π -геометрии (*б*). По оси *X* наносились значения функции плотности $F(\sigma) = \text{Log } 10 \times I_{53}/I_{M3} \times C$, где *C* – отношение показаний малого зонда к большому в воде, $C = I_{M3}/I_{53}$; I_{M3} , I_{53} – текущие показания на большом и малом зондах соответственно.

По оси У нанесены значения плотности моделей о.

Из рис. 2 видно, что функциональная зависимость вычисляемых значений функции плотности $F(\sigma)$ от плотности σ практически одинакова для метрологических образцов плотности 4π -геометрии и 2π -геометрии, что позволяет равноценно производить метрологические работы с модулем ГГК-П в условиях производственных предприятий, оснащенных одним из этих типов метрологических образцов.

Алгоритм зависимости плотности σ от вычисляемых значений функции плотности $F(\sigma)$ имеет вид $\sigma = -K \times F(\sigma) - A$, где $F(\sigma) - \phi$ ункция плотности; K и A – коэффициенты, определяемые по результатам модельных работ.

Основным мешающим фактором при определении плотности пород методом ГГК-П является наличие глинистой корки (зазора) между модулем и стенкой скважины. Для оценки влияния толщины глинистой корки на вычисляемое значение плотности были проведены экспериментальные работы на моделях плотности 2π -геометрии в метрологическом центре АО НПП «ВНИИГИС». В качестве имитатора глинистой корки применялась резина плотностью 1,26 г/см³ с толщиной 5, 10, 20 мм.

На рис. 3 приведены результаты их экспериментальных исследований. Толщины глинистых корок составляли 5, 10, 20 *мм* при плотности 1,26 *г/см*³. Вычисление плотности производилось по двум алгоритмам, где в качестве опорного значения *С* используются показания в воде с электронной плотностью 1,1 *г/см*³ (*a*) и на метрологическом образце из алюминия марки АДО с электронной плотностью 2,58 *г/см*³ (*б*).

Анализ результатов экспериментальных исследований показывает, что толщина глинистой корки 20 *мм* оказывает существенное влияние на вычисляемые значения плотности при использовании коэффициента C, определенного по показаниям в воде. Максимальная погрешность определения плотности в плотных пластах 2,7–2,9 z/cm^3 может достигать +0,06–0,09 z/cm^3 , что является недопустимым при проведении исследований скважины в процессе

бурения. В случае использования коэффициента *C*, определенного по показаниям на образце плотностью 2,58 *г/см*³, влияние толщины глинистой корки существенно уменьшается и не превышает $\pm 0,05 \ r/cm^3$. Отсюда следует, что для уменьшения влияния глинистой корки на вычисляемое значение плотности калибровку аппаратуры необходимо проводить на образцах плотности, близкой к средней плотности пород изучаемого разреза. Наиболее оптимальным метрологическим образцом для калибровки модуля ГГК-П является образец плотностью 2,58 r/cm^3 .

На рис. 4 приведены результаты сопоставления исследований, выполненных модулем ГГК-П в вертикальной контрольно-поверочной скважине ООО «ТНГ-Групп» (г. Бугульма), с результатами измерений плотности кабельным вариантом серийной аппаратуры СГПЛ [1] и в горизонтальном стволе скважины с аппаратурой LithoTrak компании Baker Hughes [2] в одной из скважин Пермского края.

Результаты сопоставления свидетельствуют о практическом совпадении полученных измерений разными типами аппаратуры плотности в интервалах с выдержанным диаметром скважины. Расхождения отмечаются в интервалах с сильнокавернозным стволом, что вполне объясняется различным влиянием кавернозности ствола скважины на показания метода ГГК для различных типов зондовых установок.

Рис. 2. Результаты обработки измерений, выполненных модулем ГГК-П в метрологическом центре ООО НПФ «АМК ГОРИЗОНт» на моделях скважин диаметром 216 *мм* 4*π*-геометрии (*a*) и на моделях плотности 2*π*-геометрии в метрологическом центре АО НПП «ВНИИГИС» (б)

Рис. 3. Результаты экспериментальных работ по исследованию влияния толщины глинистой корки на вычисляемые значения плотности с использованием двух алгоритмов и калибровки по воде с электронной плотностью 1,1 *г/см*³ (*a*) и на метрологическом образце с электронной плотностью 2,58 *г/см*³ (*б*)

На рис. 5 приведена схема обновленной комбинации инклинометрического и геофизических модулей LWD производства ООО НПФ «ВНИИГИС-3ТК», а также даны их основные технические характеристики. Реализованный вариант компоновки LWD позволяет надежно решать задачи геонавигационного и геофизического сопровождения на этапе строительства горизонтального ствола эксплуатационных нефтегазовых скважин.

В настоящее время заканчивается разработка модуля литоплотностного каротажа с реализацией азимутальной развертки плотности и индекса фотоэлектронного поглощения по стволу скважины, а также с передачей данных от модуля ГГК-П в режиме реального времени.

Выводы

Модуль ГГК-П фирмы ООО НПФ «ВНИИГИС-ЗТК» выполнен в одном из «ребер» имитатора центратора бурового инструмента, что позволяет обеспечить минимальный зазор между модулем и стенкой скважины и расположить модуль параллельно стенке скважины, что значительно повышает достоверность получаемой информации о плотности горных пород. Для каждого диаметра скважины изготавливается свой центратор, при этом размеры полости в «ребре» центратора для крепления модуля ГГК-П остаются неизменными.

Рис. 4. Результаты исследований вертикальной контрольно-поверочной скважины ООО «ТНГ-Групп» (г. Бугульма) модулем ГГК-П в сопоставлении с результатами исследований серийным кабельным вариантом аппаратуры СГПЛ (а) и в горизонтальном стволе скважины с аппаратурой LithoTrak компании Baker Hughes (б) в одной из скважин Пермского края

Рис. 5. Схема одного из вариантов компоновки геофизических модулей LWD производства ООО НПФ «ВНИИГИС-ЗТК» и их основные характеристики

Результаты экспериментальных исследований модуля ГГК-П показали равноценность замеров на образцах плотности 2π -геометрии и 4π -геометрии, что позволяет в условиях геофизических предприятий использовать любой из типов для метрологических работ.

Надежную компенсацию влияния толщины глинистой корки до 20 *мм* (зазор между модулем ГГК-П и стенкой скважины) обеспечивается путем калибровки на образце плотности, близкой к средней плотности пород разреза скважины. Для большинства разрезов нефтегазовых скважин эта плотность составляет 2,58 *г/см*³.

Сопоставления результатов определения плотности модулем ГГК-П с данными измерений плотности кабельным вариантом серийной отечественной аппаратуры СГПЛ и результатами измерений, выполненных зарубежной аппаратурой LithoTrak компании Baker Hughes в горизонтальном стволе скважины, показали хорошую сходимость, что является одним из критериев достоверности информации.

ЛИТЕРАТУРА

1. Инструкция по проведению литолого-плотностного гамма-гамма-каротажа аппаратурой серии СГПЛ и обработке результатов измерений. МИ 41-17-1402-04. 2. *Рамазанов А. Г. Васильев В. В.* Технологии Baker Hughes для сокращения цикла строительства скважин в Западной Сибири / Neftegaz.RU, 2020. № 6.

Рецензент канд. геол.-минер. наук Н. М. Зараменских